

OVERVIEW

- What is Building Science?
- Why is water vapor important?
- How does moisture affect building performance?
- How do we deal with water vapor?

Building Science

- Study of heat, air, and moisture flows across the building enclosure
- Building enclosure separation between exterior environment and interior conditioned space

HISTORY

- Historically, housing's primary purpose was shelter from rain, wind, sun
- Gradually developed with materials and skills
- Industrial revolution brought mass production of building materials
- Oil crisis more of an emphasis on energy

PHRC BUILDING SCIENCE COURSE

OVERVIEW

- What is Building Science?
- Why is water vapor important?
- How does moisture affect building performance?
- How do we deal with water vapor?

FUNCTIONS OF BLDG ENVELOPE

- Support (structural)
- Control (heat, air, **moisture**, smoke, odor, sound, fire, insects, etc.)
- Aesthetics (exterior and interior finishes)
- Distribution of Services (MEP)

10

MOISTURE

- More specifically, moisture present in interior (conditioned) space
- Water Vapor

Fundamentals

- Vapor pressures
- Vapor pressure \rightarrow Temperature
- Relative humidity
- Dew point
- Psychometric chart
- Condensation

 $| \, |$

13

VAPOR PRESSURE

• Saturation Vapor Pressure:

$$P_{sat} = 1000 \times e^{(52.58 - \frac{67905}{T} - 5.028 \ln(T))}$$

- Partial Vapor Pressure
 - Measured value representing amount of moisture present

SUMMER PICNIC EXAMPLE

- Assumptions:
 - July
 - PM
 - Temperature = 85°
 - Relative Humidity = 50%
- At what temperature will your beverage "sweat"?

CONDENSATION

- When humid air (high RH) comes in contact with a cool surface, condensation can occur
- Where might this happen?

OVERVIEW

- What is Building Science?
- Why is water vapor important?
- How does moisture affect building performance?
- How do we deal with water vapor?

BUILDING PERFORMANCE

• What are some characteristics that determine how well a building "performs"?

24

"OCCUPANT COMFORT"

- According to ASHRAE:
 - Conditions acceptable to 80% or more of occupants

IDEAL RELATIVE HUMIDITY

- What are the factors at play?
 - Occupant comfort
 - Building performance
 - Occupant health
- ASHRAE Standards

LOW RELATIVE HUMIDITY

- RH < 25%
 - Occupant health issues (dry nose, throat, eyes, and skin)
 - Static shock
 - Shrinkage of wood floors, furniture
 - Low risk of mold growth
 - Dew point temperature (70° indoor air) = 32°

HIGH RELATIVE HUMIDITY

- RH > 60%
 - Reduced durability of building systems
 - Mold health issues
 - Condensation

28

Mold

- RH greater than 70% can lead to mold, dust mites, decay, corrosion, etc.
- Heating climates:
 - Interior surfaces of exterior walls cool from heat loss
 - Moisture levels within space too high
 - RH rises as temperature drops

- Humidification / dehumidification
 - Keep RH as low as possible in winter months
 - Portable units vs. whole house systems
- Spot ventilation
 - Bathrooms
 - Kitchen

OTHER DESIGN CONSIDERATIONS

- Overall building envelope design
 - Heat
 - Air
 - Moisture
- PHRC Building Science Course

