A Summary of the International Stormwater BMP Database

Tuesday, February 12, 2013, 1:00PM

Presented by: Katie Blansett, Ph.D., P.E. Pennsylvania Housing Research Center

Objective

The objective of this webinar is to summarize two PHRC Land Development Briefs on the International Stormwater BMP Database.

This webinar will introduce viewers to the Database, provide an overview of the data available, and summarize findings that can be incorporated into stormwater management design.

Outline

- Introduce the International BMP Stormwater Database
- Present the BMPs in PA that are in the Database
- Summarize percent removal for sediment, nitrogen and phosphorus for various BMPs
- Present volume reduction data currently available in the Database
- Limitations of % removal
- New beta tool available on the Database webpage
- Summarize design recommendations based on the findings

Summary of Briefs

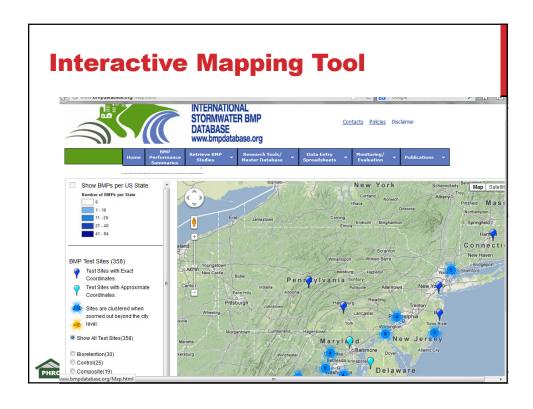
- PHRC conducted a review of the International Stormwater Database to summarize data applicable to residential projects in Pennsylvania
- The study resulted in two Land Development Briefs available on the PHRC website at www.engr.psu.edu/phrc
 - The International Stormwater BMP Database Part 1: Summary of Database
 - The International Stormwater BMP Database Part 2: Data Summary for the Design of Residential BMPs

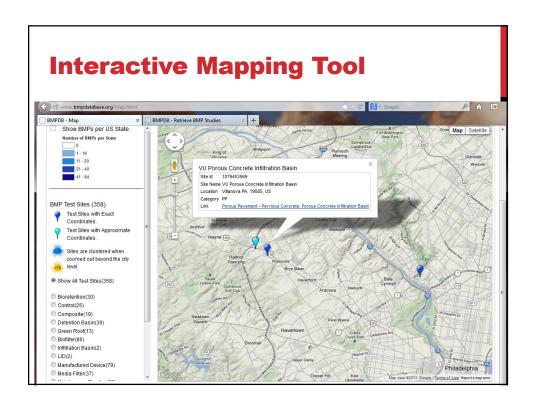
International Stormwater Best Management Practices Database

- Centralized repository of stormwater BMP data
- Supported by:
 - Water Environment Research Foundation (WERF)
 - U.S. Environmental Protection Agency (USEPA)
 - ASCE Environmental and Water Resources Institute (EWRI)
 - Federal Highway Administration (FHWA)
 - American Public Works Association (APWA)
- Over 500 BMPs around the country
- Designed to allow researchers and designers access to continually updated data on the performance of stormwater BMPs

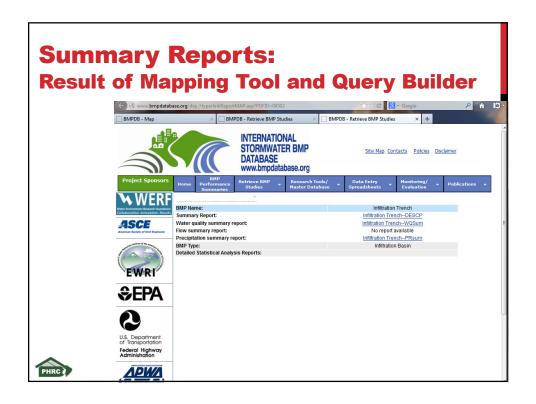
International Stormwater BMP Database

- Microsoft Access database, free for download
 - http://www.bmpdatabase.org/
- Data entered in Excel spreadsheet form
 - the location of the BMP
 - watershed characteristics
 - details of monitored precipitation events
 - BMP design parameters
 - instrumentation details
 - defining characteristics of runoff events
 - water quality analysis data
 - sediment particle distribution




International Stormwater BMP Database


- Search capabilities to find data on specific water quality parameters or BMPs types
- Interactive mapping tool to locate BMPs
- Statistical summary reports developed by the project team



Summary Categories

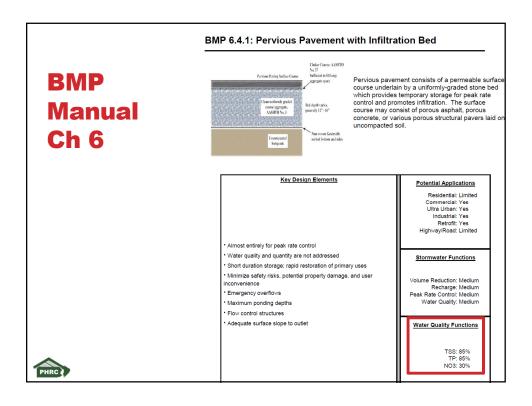
BMP Category	# of BMPs Studied
Bioretention	30
Detention basin	39
Green roof	13
Biofilter – Grass strip	45
Biofilter - Grass swale	41
Infiltration basin	2
LID (site scale)	2
Manufactured device	79
Media filter	37
Percolation trench/well	12
Porous pavement	35
Retention pond	68
Wetland basin	31
Wetland channel	19
Composite (treatment train)	25
Maintenance practice	28
Other	6
Total	512

Projects in PA

- Harrisburg Public Works Yard
 - Manufactured device two-chamber sediment trap
- Penn State University (University Park)
 - Green room
- Villanova University
 - Infiltration trench
 - Porous concrete infiltration basin
 - Additional data at Villanova Urban Stormwater
 Partnership http://www3.villanova.edu/vusp/

Water Quality Data

- Over 3,000 different water quality constitutes reported
- Sediment, nitrogen & phosphorous
 - Chesapeake Bay TMDL Plan
 - PA DEP NPDES Permit for Stormwater Discharges Associated with Construction Activities
- Median influent and effluent values reported project team in technical reports



Percent Removal

 $\frac{\text{percent}}{\text{removal}} = \frac{(\text{influent conc.} - \text{effluent conc.})}{\text{influent conc.}} * 100$

- PA DEP NPDES Permits for Stormwater Discharges Associated with Construction Activities
- TMDL Strategy Plan as part of the NPDES Permit for Stormwater Discharges from Small Municipal Separate Storm Sewer Systems (MS4s) (PAG-13)

	L	COMPREHENSIVE BM	P LIST			
			Pollutant	Pollutant Removal Efficiency %		
			TSS	TP	NO3	
	Non-	Structural BMP				
	5.4.1	Protect Sensitive / Special Value Features	SC	SC	SC	
BMP	5.4.2	Protect / Conserve / Enhance Riparian Areas	SC	SC	SC	
	5.4.3	Protect / Utilize Natural Flow Pathways in Overall				
	5.4.3	Stormwater Planning and Design	30	20	0	
Manual	5.5.1	Cluster Uses at Each Site; Build on the Smallest				
Manai	5.5.1	Area Possible	SC	SC	SC	
	5.5.2	Concentrate Uses Areawide through Smart Growth				
Appondix A	5.5.2	Practices	SC	SC	SC	
Appendix A	5.6.1	Minimize Total Disturbed Area - Grading	40	0	0	
	5.6.2	Minimize Soil Compaction in Disturbed Areas	30	0	0	
	5.6.3	Re-vegetate and Re-forest Disturbed Areas using				
		Native Species	85	85	50	
		Reduce Street Imperviousness	SC	SC	SC	
		Reduce Parking ImperviousnesS	SC	SC	SC	
		Rooftop Disconnection	30	0	0	
		Disconnection from Storm Sewers	30	0	0	
	5.9.1	Streetsweeping	85	85	50	
	Struc	ctural BMP				
	6.4.1	Porous Pavement with Infiltration Bed	85	85	30	
	6.4.2	Infiltration Basin	85	85	30	
	6.4.3	Subsurface Infiltration Bed	85	85	30	
	6.4.4	Infiltration Trench	85	85	30	
	6.4.5	Rain Garden / Bioretention	85	85	30	
	6.4.6	Dry Well / Seepage Pit	85	85	30	
	6.4.7	Constructed Filter	85	85	30	
	6.4.8	Vegetated Swale	50	50	20	
	6.4.9	Vegetated Filter Strip	30	20	10	
	6.4.10	Infiltration Berm and Retentive Grading	60	50	40	
		Vegetated Roof	85	85	30	
	6.5.2	Rooftop Runoff - Capture and Reuse	100	100	100	
	6.6.1	Constructed Wetland	85	85	30	
		Wet Pond / Retention Basin	70	60	30	
		Dry Extended Detention Basin	60	40	20	
		Water Quality Filter	60	50	20	
		Riparian Buffer Restoration	65	50	50	
PHPC		Landscape Restoration	85	85	50	
7	6.7.3	Soils Amendment and Restoration	85	85	50	

Sediment

- Sediment parameters
 - Total suspended sediment (TSS)
 - Total dissolved sediment (TDS)
 - Turbidity

Sediment Removal

- TSS removal
 - Media filters
 - Porous pavement
 - Composite BMPs
- TDS removal
 - Not statistically significant
- Turbidity removal
 - Similar to TSS, limited data

Data Tables

- Number of studies and Number of EMCs
- Median concentrations, mg/L (from Database)
 - Influent
 - Effluent
- Percent reduction (calculated)
 - Influent
 - Effluent
- Shaded, bold values indicate statistically significant decrease or increase in calculated percent removal

2		# of studies	,# of EMCs	concen	dian trations g/L)	Percent reduction
2		Inf.	Eff.	Inf.	Eff.	
r.	Media Filter	28, 442	29, 409	52.7	8.7	83%
	Porous Pavement	14, 246	23, 406	65.3	13.2	80%
	Composite	10, 201	10, 163	94	17.4	81%
	Retention Pond	47, 725	48, 723	70.7	13.5	81%
	Bioretention	14, 202	14, 193	37.5	8.3	78%
7	Detention Basin	20, 287	21, 299	66.8	24.2	64%
	Grass Strip	19, 350	20, 286	43.1	19.1	56%
	Wetland Basin	15, 301	17, 305	20.4	9.06	56%
	Manufactured Device	55, 923	63, 904	34.5	18.4	47%
	Bioswale	21, 338	23, 354	21.7	13.6	37%
	Wetland Channel	8, 189	8, 154	20	14.3	29%
>	Green Roof	2, 20	4, 51	10.5	2.9	72%

Sediment Removal Techniques

- Increase hydraulic residence time
 - Lengthen flow paths in ponds or wetlands
 - Increase bed thickness
 - Create evenly distributed flows
 - Increase density of vegetation
- Conduct regular maintenance to prevent clogging in filtration and infiltration BMPs

Nitrogen

- Total nitrogen (TN),
 - Sum of TNK plus nitrate (NO₃-) and nitrite (NO₂-)
- Total Kjeldahl nitrogen (TKN),
 - Sum of organic nitrogen, ammonia (NH₃), and ammonium (NH₄+)
- NO_x
 - Sum of NO₃⁻ and NO₂⁻

(NT)		# of st	•	concen	dian itrations g/L)	Percent
		Inf.	Eff.	Inf.	Eff.	reduction
S	Retention Pond	19, 259	19, 272	1.83	1.28	30%
6	Bioretention	12, 218	12, 200	1.25	0.9	28%
Nitrogen	Composite	3, 53	4, 64	2.37	1.71	28%
=	Media Filter	5, 100	5, 87	1.06	0.82	23%
Z	Grass Strip	8, 138	8, 122	1.34	1.13	16%
	Wetland Channel	5, 83	6, 88	1.59	1.33	16%
12	Bioswale	6, 181	8, 238	0.75	0.71	5%
Total	Manufactured Device	8, 133	8, 117	2.27	2.22	2%
	Green Roof	NA	NA	NA	NA	NA
	Wetland Basin	6, 222	6, 223	1.14	1.19	-4%
	Porous Pavement	1, 14	9, 136	1.26	1.49	-18%
PHRC	Detention Basin	3, 52	3, 64	1.4	2.34	-67%

(TKN)		# of studies	•	Med concent (mg	trations g/L)	Percent reduction
 -		Inf.	Eff.	Inf.	Eff.	
	Porous Pavement	12, 224	23, 396	1.66	0.8	52%
96	Media Filter	26, 411	25, 374	0.96	0.57	41%
Nitrogen	Composite	7, 130	9, 145	1.64	1.02	38%
Z	Bioretention	14, 214	14, 201	0.94	0.6	36%
ah l	Retention Pond	36, 482	39, 496	1.28	1.05	18%
Total Kjeldahl	Wetland Channel	6, 122	7, 139	1.45	1.23	15%
Y	Grass Strip	19, 350	19, 272	1.29	1.09	16%
<u>a</u>	Bioswale	17, 288	19, 324	0.72	0.62	14%
Tot	Manufactured Device	24, 390	31, 433	1.59	1.48	7%
-	Wetland Basin	6, 72	8, 184	0.95	1.01	-6%
	Detention Basin	11, 175	12, 185	1.49	1.61	-8%
PHRC	Green Roof	1, 15	3, 32	1.51	1.75	-16%

(x		# of studios	s, # of EMCs	concen	dian trations g/L)	Percent reduction
2		Inf.	Eff.	Inf.	g/∟/ Eff.	reduction
(NO _x	Wetland Basin	11, 245	11, 246	0.24	80.0	67%
t	Retention Pond	43, 639	43, 626	0.43	0.18	58%
Nitrite	Wetland Channel	8, 149	8, 132	0.34	0.19	44%
Z	Detention Basin	13, 201	14, 213	0.55	0.36	35%
+	Composite	9, 157	10, 142	0.57	0.4	30%
0	Grass Strip	20, 360	20, 287	0.41	0.27	34%
Nitrate	Bioretention	17, 278	17, 259	0.26	0.22	15%
7	Green Roof	2, 21	4, 55	0.39	0.31	21%
7	Bioswale	20, 335	22, 372	0.3	0.25	17%
	Manufactured Device	33, 504	40, 546	0.41	0.41	0%
	Media Filter	27, 434	26, 391	0.33	0.51	-55%
PHRC	Porous Pavement	13, 229	23, 401	0.42	0.71	-69%

Nitrogen Removal Techniques

 Overall, vegetated BMPs with permanent pools such as wetland basins and channels, bioretention and retention ponds are the most effective BMPs for reducing forms of N

Phosphorus

- Total phosphorus (TP)
 - Includes all forms of phosphorus, both the particulate form that is frequently adsorbed to soil particles and the phosphorus that is dissolved in the runoff
- Orthophosphate (OP)
 - Phosphate ion (PO₄³⁻) and is often referred to as reactive phosphorus
- Dissolved phosphorus (DP)
 - Portion of phosphorus that is dissolved in the runoff and found by passing the sample through a 0.45 micron membrane to remove any sediment from the sample

(TP)			lies, # of ICs Eff.	Med concent (mg	rations	Percent reduction
	Composite	9, 176	10, 153	0.36	0.13	64%
Ž	Retention Pond	46, 657	48, 654	0.3	0.13	57%
ō	Media Filter	28, 433	28, 403	0.18	0.09	50%
Phosphorus	Porous Pavement	13, 231	22, 389	0.15	0.09	40%
ő	Wetland Basin	13, 282	13, 278	0.13	80.0	38%
P	Manufactured Device	45, 602	52, 641	0.19	0.12	37%
Total	Detention Basin	18, 250	19, 275	0.28	0.22	21%
9	Bioretention	18, 271	18, 249	0.11	0.09	18%
	Wetland Channel	8, 167	8, 147	0.15	0.14	7%
	Grass Strip	20, 358	20, 280	0.14	0.18	-29%
	Bioswale	20, 331	22, 364	0.11	0.19	-73%
PHRC	Green Roof	2, 22	5, 60	0.09	0.5	-456%

t				Med concen	trations	Percent
<u>a</u>		# of studies	s, # of EMCs Eff.	(mç Inf.	g/L) Eff.	reduction
q	Retention Pond	27, 361	28, 357	0.1	0.04	60%
Orthophosphat	Manufactured Device	14, 201	14, 185	0.21	0.1	52%
<u></u>	Media Filter	9, 170	9, 157	0.05	0.03	40%
2	Wetland Basin	5, 166	5, 161	0.03	0.02	33%
T	Detention Basin	2, 31	2, 31	0.53	0.39	26%
0	Composite	4, 56	4, 47	0.09	0.07	22%
	Porous Pavement	7, 87	9, 112	0.05	0.05	0%
	Grass Strip	14, 274	14, 223	0.03	0.06	-100%
	Wetland Channel	3, 84	3, 63	0.03	0.06	-100%
	Bioretention	13, 164	13, 164	0.01	0.04	-300%
	Bioswale	5, 140	7, 197	0.03	0.12	-300%
PHRC	Green Roof	2, 21	4, 55	0.02	0.46	-2200%

		dies, # of ICs	concen	dian trations g/L)	Percent reduction
	Inf.	Eff.	Inf.	Eff.	
Retention Pond	19, 379	20, 371	0.13	0.06	54%
Wetland Basin	5, 114	5, 113	80.0	0.05	38%
Composite	7, 143	8, 142	0.16	0.08	50%
Bioretention	1, 10	1, 10	0.25	0.13	48%
Manufactured Device	16, 239	23, 265	0.08	0.06	25%
Media Filter	13, 103	13, 96	0.08	0.08	0%
Green Roof			NA	NA	NA
Detention Basin	8, 91	9, 94	0.1	0.11	-10%
Wetland Channel	5, 92	5, 89	0.08	0.09	-13%
Porous Pavement	4, 114	5, 125	0.04	0.05	-25%
Grass Strip	3, 21	3, 17	0.08	0.25	-213%
Bioswale	6, 66	6, 52	0.06	0.07	-17%

Phosphorus Removal Techniques

- Phosphorus generally transported through the adsorption to sediment rather than dissolved in water
 - Remove sediment → remove phosphorus
 - Sedimentation and filtration

Addressing P Increases

- BMP media with high P concentrations can export P in the effluent
- Especially important in BMPs where water is stored in soil or media with an under-drained system
- Specify soil or media, test P concentration if using site soils

Volume Reduction

- Early data collection focused on WQ
- Volume data not included until more recently
- BMPs with normally dry conditions are best for long-term volume reduction
 - Largest volume reduction for smaller storms which occur more frequently than larger storms

Volume Reduction

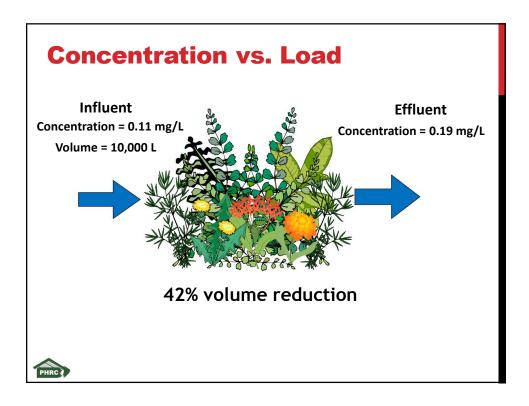
	# of Study Locations	Median % Reduction
Bioretention (w/underdrain)	7	57%
Biofilter – grass swales	13	42%
Biofilter – grass strips	16	34%
Detention basins – surface, grass lined	11	33%

Volume Reduction

- Very sensitive to local soil conditions
 - Soil textural class
 - Compaction
 - Depth to groundwater, bedrock or impermeable layer

Limitations of Percent Removal

- Can be function of influent water quality rather than BMP effectiveness
 - Dirtier water has a higher percent removal than cleaner water
- Hides large variability in data
- Doesn't account for volume reduction

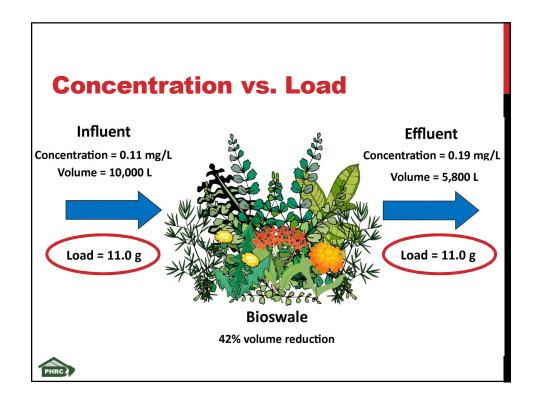

Concentration vs. Load

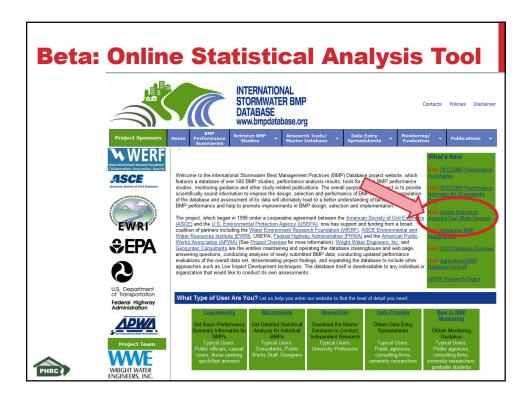
Median influent concentration is 0.11 mg/L Median effluent concentration is 0.19 mg/L 73% increase in phosphorus concentration

Concentration vs. Load

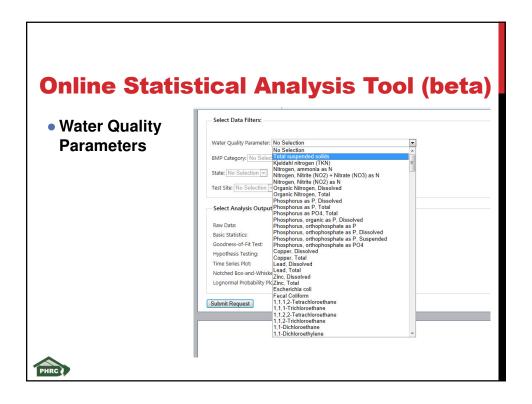
Influent Load Calculation

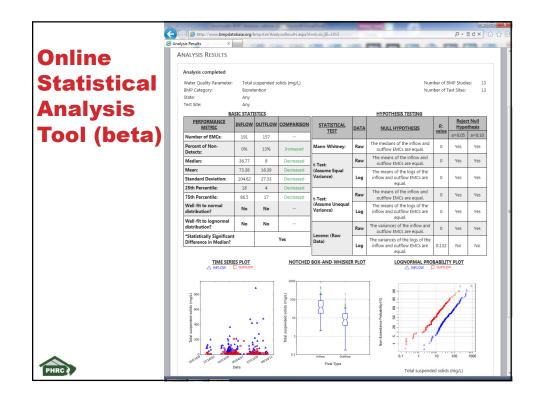
$$(0.11 \, mg/L) \times (10,000 \, L) \times \left(\frac{1 \, g}{1,000 \, mg}\right) = 11.0 \, g$$

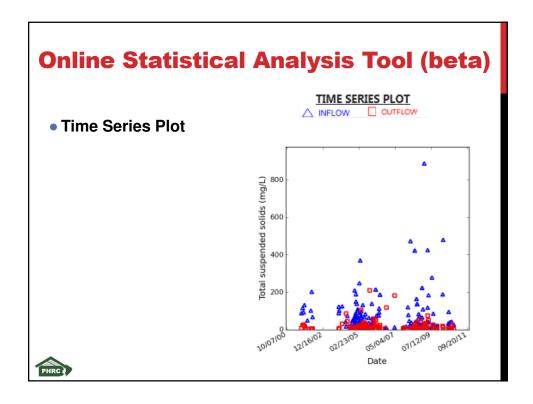

Effluent Volume Calculation

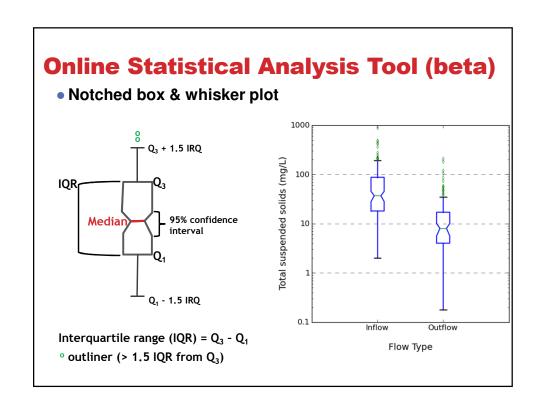

$$(10,000 L) \times (1-0.42) = 5,800 L$$

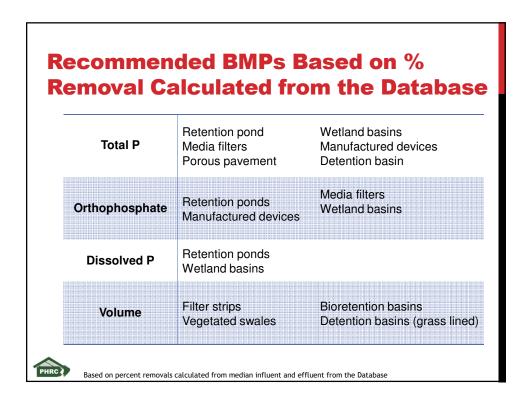
Effluent Load Calculation


$$(0.19 \ mg/L) \times (5,800 \ L) \times \left(\frac{1 \ g}{1,000 \ mg}\right) = 11.0 \ g$$









	ended BMPs	rom the Datak
iiuvai	Calculated	Tom the Data
TSS	Media filters Porous pavement Retention ponds Bioretention Detention basins	Grass strips Wetland basins Bioswales Manufactured devices Wetland channels
Total N	Retention ponds Bioretention ponds Media filter	
TKN	Porous pavement Media filters Bioretention	Retention pond Wetland channel
NO _x	Wetland basins Retention ponds Wetland channels	Detention basin Grass strip Bioretention

BMPs that Tend Increase Pollutant Concentrations

Total N	Detention basin
NOx	Porous pavement Media filters
TP	Grass strips Bioswales Green roofs
Orthophosphate	Grass strips Bioretention Bioswales Green roofs Wetland channels
Dissolved P	Bioswales

Based on percent removals calculated from median influent and effluent from the Database

Thank you!

Questions?

PA Housing and Land Development Conference

February 20-21, 2013

Day 1 - Housing Conference

Day 2 – Land Development Conference & Training (Housing-Related)

www.engr.psu.edu/phrc

Next month's webinar:

Attic and Roof Ventilation – Facts and Fiction Tuesday, March 12, 1:00 PM

Register at: www.engr.psu.edu/phrc/Training/Webinars.htm

